
Example 3: A particle P moves with simple harmonic motion about a point 𝑂𝑂. Given that the maximum displacement of 
the particle from 𝑂𝑂 is 𝑎𝑎, show that 𝑣𝑣2 = 𝜔𝜔2(𝑎𝑎2 − 𝑥𝑥2).  

Damped harmonic motion 
In reality, there is likely to be an additional force (e.g. air resistance) that acts on a particle, which is proportional to the 
velocity of the particle. When this force causes the particle to slow down, it is known as a damping force and the particle 
is said to be moving with damped harmonic motion. 

 For a particle moving with damped harmonic motion, 

This is again a second-order homogeneous differential equation. The type of damping that the particle exhibits can be 
deduced from the roots of the auxiliary equation: 

 When 𝑘𝑘2 > 4𝜔𝜔2, the auxiliary equation has two distinct real roots and the particle is subject to heavy
damping. There are no oscillations performed. 

 When 𝑘𝑘2 = 4𝜔𝜔2, the auxiliary equation has equal roots and the particle is subject to critical damping. There 
are no oscillations performed. 

 When 𝑘𝑘2 < 4𝜔𝜔2, the auxiliary equation has complex roots and the particle is subject to light damping. The 
amplitude of the oscillations will exponentially decay over time. 

It is important you remember the above points, so you are able to determine the type of damping a particle is 
experiencing. 

Example 4: A particle P hangs freely in equilibrium attached to one end of a light elastic string. The other end of the 
string is attached to a fixed point 𝐴𝐴. The particle is now pulled down and held at rest in a container of liquid which exerts 
a resistance to motion on 𝑃𝑃. 𝑃𝑃 is then released from rest. While the string remains taut and the particle in the liquid, the 
motion can be modelled using the equation  

Find the general solution to the differential equation and state the type of damping the particle is subject to. 

Forced harmonic motion 
When a particle is also subject to an external force that causes it to oscillate at a frequency other than its natural one, we 
say that the particle is moving with forced harmonic motion. The differential equation that consequently forms is no 
longer homogeneous. 

 For a particle moving with forced harmonic motion, 

The principle is the same as before: we solve the differential equation using methods from the previous chapter and use 
our solution to answer any further questions about the model. The only difference here is that we will need to make use 
of the particular integral to find the complete solution.  

Example 5: A particle P is attached to end A of a light elastic string AB. Initially the particle and string lie at rest on a 
smooth horizontal plane. At time 𝑡𝑡 = 0, the end B of the string is set in motion and moves with constant speed 𝑈𝑈 in the 
direction AB, and the displacement of P from A is x. Air resistance acting on P is proportional to its speed.  

The subsequent motion can be modelled by the differential equation 
Find an expression for 𝑥𝑥 in terms of 𝑈𝑈, 𝑘𝑘 and 𝑡𝑡. 

This chapter focuses on applying the methods from the previous chapter to real-life scenarios. You will learn to form 
differential equations from a given scenario and use the solution of a differential equation to analyse the motion of a 
particle. We will then learn about simple, damped and forced harmonic motion and their relation to differential 
equations. Finally, we will learn to solve coupled first-order differential equations. 

Modelling with first-order differential equations 
You need to be comfortable solving first-order differential equations given in context and using your solutions to answer 
questions about the model. First-order differential equations are often used to model problems in kinematics. Here is an 
example: 

Example 1: A sports car moves along a horizontal straight road. At time 𝑡𝑡 seconds, the acceleration, in 𝑚𝑚𝑠𝑠−2, is modelled 
using the differential equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 2𝑣𝑣𝑡𝑡 = 𝑡𝑡, where 𝑣𝑣 is the velocity of the car in 𝑚𝑚𝑠𝑠−1. When 𝑡𝑡 = 0, the car is travelling 

at 1𝑚𝑚𝑠𝑠−1. Find the velocity of the car after 2 seconds. 

As you can see, the methods are the same as in the previous chapter, Methods in Differential Equations. You just need to 
be comfortable in their application to problems in context.  

Forming first-order differential equations 
A problem that typically appears is one where you are expected to form a first-order differential equation using 
contextual information given to you in the question. These questions are similar in nature and often revolve around the 
rate of change of volume of a given quantity, where the quantity is both flowing in and out of a confined space. 

Example 2: A gas storage tank initially contains 500 cm3 of helium. The helium leaks out at a constant rate of 20 cm3 per 
hour and a gas mixture is added to the tank at a constant rate of 50 cm3 per hour. The gas mixture contains 5% oxygen 
and 95% helium. Given that there is 𝑥𝑥 cm3 of oxygen in the tank after 𝑡𝑡 hours and that the oxygen immediately mixes 
throughout the tank on entry, show that the situation can be modelled by the differential equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2.5 − 2𝑑𝑑

50+3𝑑𝑑
. 

By looking at the amount of gas flowing in separately to the amount of gas flowing out, we are able to break down the 
problem and use a logical approach. 

Simple harmonic motion 
Second order differential equations can be used to model particles moving with simple harmonic motion.  You may be 
asked to solve these differential equations and use your solutions to answer questions about the model. 

 Simple harmonic motion refers to any motion where the acceleration of a particle is always directed towards 
a fixed-point O and where the acceleration of the particle is proportional to its displacement from 𝑂𝑂. 

 The motion of a particle moving with S.H.M will satisfy the differential equation �̈�𝑥 = −𝜔𝜔2𝑥𝑥, where 𝜔𝜔 is a 
constant. This is a second-order homogeneous differential equation. 

 A particle moving with S.H.M will have zero velocity at the points of maximum displacement and maximum 
velocity when passing through the fixed point 𝑂𝑂. 

The following representation of acceleration is important in proving general statements about simple harmonic motion: 

• �̈�𝑥 = 𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Forming second-order differential equations relating to damped and forced harmonic motion 
You may be asked to form a second-order differential equation from a given context. You will be told which forces act on 
a particle, but it’s up to you to prove that the resulting equation of motion satisfies a given differential equation. To do 
so: 

 Draw a diagram labelling all the forces acting on the particle and use 𝐹𝐹 = 𝑚𝑚𝑎𝑎 to obtain an equation of 
motion. 

o Acceleration should be taken as positive in the direction of increasing 𝑥𝑥.
o Forces that tend to increase the displacement should be positive 

Example 6: A particle P of mass 1.5kg is moving on the 𝑥𝑥-axis. At time t the displacement of P from the origin O is 𝑥𝑥 
metres and the speed of P is 𝑣𝑣 𝑚𝑚𝑠𝑠−1. Three forces act on P, namely a restoring force of magnitude 7.5x N, a resistance to 
the motion of P of magnitude 6v N and a force of magnitude 12sint N acting in the direction OP.  

Show that 𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑑𝑑2
+ 4 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 5𝑥𝑥 = 8 sin 𝑡𝑡.

Coupled first-order simultaneous differential equations 
Finally, you need to be able to solve pairs of first order differential equations simultaneously.. You will be given a pair of 
first order differential equations of the form: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 + 𝑓𝑓(𝑡𝑡) 
 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑥𝑥 + 𝑑𝑑𝑏𝑏 + 𝑔𝑔(𝑡𝑡) 
 

and you will be expected to form a second-order differential equation, in either 𝑥𝑥 or 𝑏𝑏. To do so, you can use the process 
outlined in the below example: 

Example 7: At the start of the year 2010, a survey began on the numbers of bears and fish on a remote island in 
Northern Canada. After t years the number of bears, b, and the number of fish, f, on the island are modelled by the  

differential equations:  
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This is a first-order differential equation. We want to find the 
velocity after 2𝑠𝑠 which means we first need to solve it.  

𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

− 2𝑣𝑣𝑡𝑡 = 𝑡𝑡

Use the integrating factor method since this DE is non-
separable. 

𝐼𝐼 = 𝑒𝑒∫−2𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝑑𝑑2  

⇒ 𝑒𝑒−𝑑𝑑2
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

− 2𝑒𝑒−𝑑𝑑2𝑣𝑣𝑡𝑡 = 𝑡𝑡𝑒𝑒−𝑑𝑑2

Use the product rule to simplify the LHS. 
𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑣𝑣𝑒𝑒−𝑑𝑑2� = 𝑡𝑡𝑒𝑒−𝑑𝑑2  

Integrate both sides. 𝑣𝑣𝑒𝑒−𝑑𝑑2 = �𝑡𝑡𝑒𝑒−𝑑𝑑2 𝑑𝑑𝑡𝑡 

To integrate the RHS, you can use by parts or notice that 
𝑑𝑑
𝑑𝑑𝑑𝑑
�− 1

2
𝑒𝑒−𝑑𝑑2� = 𝑡𝑡𝑒𝑒−𝑑𝑑2. 𝑣𝑣𝑒𝑒−𝑑𝑑2 = −

1
2
𝑒𝑒−𝑑𝑑2 + 𝑐𝑐 

Multiply through by 𝑒𝑒𝑑𝑑2 . 𝑣𝑣 = −
1
2

+ 𝑐𝑐𝑒𝑒𝑑𝑑2

Use the given initial condition 𝑡𝑡 = 0, 𝑣𝑣 = 1 to find 𝑐𝑐. 1 = −
1
2

+ 𝑐𝑐 ∴ 𝑐𝑐 =
3
2

So, our solution is: 𝑣𝑣 = −
1
2

+
3
2
𝑒𝑒𝑑𝑑2  

To find the velocity after 2 seconds, substitute 𝑡𝑡 = 2. 𝑣𝑣 = −
1
2

+
3
2
𝑒𝑒4 = 81.4𝑚𝑚𝑠𝑠−1 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 represents the rate of change of oxygen.  

The amount of oxygen coming in per hour is 5
100

× 50 = 5
2
. 

�
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
�
𝑖𝑖𝑖𝑖

=
5

100
× 50 =

5
2

Amount of oxygen coming out per hour = 20 × (𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟 𝑟𝑟𝑓𝑓 𝑟𝑟𝑥𝑥𝑏𝑏𝑔𝑔𝑒𝑒𝑜𝑜 𝑡𝑡𝑟𝑟 𝑡𝑡𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡 𝑔𝑔𝑎𝑎𝑠𝑠). 
The oxygen in the tank is given by 𝑥𝑥, and the total gas in the tank is given by 500 +
50𝑡𝑡 − 20𝑡𝑡 because there is initially 500 𝑐𝑐𝑚𝑚3 of helium, 50𝑐𝑐𝑚𝑚3 is added every hour 
and 20 𝑐𝑐𝑚𝑚3 is leaking every hour. 

�
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
�
𝑜𝑜𝑜𝑜𝑑𝑑

= 20 ×
𝑥𝑥

500 + 50𝑡𝑡 − 20𝑡𝑡

=
20𝑥𝑥

500 + 30𝑡𝑡
=

2𝑥𝑥
5 + 3𝑡𝑡

The net rate of change of oxygen, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 , is given by �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖𝑖𝑖
− �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝑜𝑜𝑜𝑜𝑑𝑑

. ∴
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=
5
2
−

2𝑥𝑥
5 + 3𝑡𝑡

 We start using the two facts above:  �̈�𝑥 = −𝜔𝜔2𝑥𝑥, �̈�𝑥 = 𝑣𝑣
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

Equate the expressions for 𝑥𝑥.̈  
This is a separable differential equation. 𝑣𝑣

𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= −𝜔𝜔2𝑥𝑥 

Separate the variables. �𝑣𝑣 𝑑𝑑𝑣𝑣 = �−𝜔𝜔2𝑥𝑥 𝑑𝑑𝑥𝑥 

Carry out the integration. 𝑣𝑣2

2
= −

𝜔𝜔2𝑥𝑥2 
2

+ 𝑐𝑐

We are told the max displacement from 𝑂𝑂 is 𝑎𝑎. This 
means that at 𝑥𝑥 = 𝑎𝑎,𝑣𝑣 = 0. Use this to find 𝑐𝑐. 0 = −

𝜔𝜔2𝑎𝑎2 
2

+ 𝑐𝑐 ∴  𝑐𝑐 =
𝜔𝜔2𝑎𝑎2 

2

Our equation becomes: 𝑣𝑣2

2
= −

𝜔𝜔2𝑥𝑥2 
2

+
𝜔𝜔2𝑎𝑎2 

2

Simplify the equation. 𝑣𝑣2 = 𝜔𝜔2(𝑎𝑎2 − 𝑥𝑥2) 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝑘𝑘
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝜔𝜔2𝑥𝑥 = 0 applies.

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 6𝑘𝑘
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 5𝑘𝑘2𝑥𝑥 = 0 , where 𝑘𝑘 is a positive real constant.

We solve the auxiliary equation using the quadratic formula. 𝑚𝑚2 + 6𝑘𝑘𝑚𝑚 + 5𝑘𝑘2 = 0 
𝑚𝑚 = −5𝑘𝑘,𝑚𝑚 = 𝑘𝑘 

We found two real roots, so the particle is subject to heavy 
damping. Find the general solution. 

𝑥𝑥 = 𝐴𝐴𝑒𝑒−5𝑘𝑘𝑑𝑑 + 𝐵𝐵𝑒𝑒−𝑘𝑘𝑑𝑑, the particle experiences 
heavy damping since we have two real roots. 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝑘𝑘
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝜔𝜔2𝑥𝑥 = 𝑓𝑓(𝑡𝑡) applies.

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 2𝑘𝑘
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑘𝑘2𝑥𝑥 = 2𝑘𝑘𝑈𝑈. 

We first solve the corresponding auxiliary equation: 𝑚𝑚2 + 2𝑘𝑘𝑚𝑚 + 𝑘𝑘2 = 0 
𝑚𝑚 = −𝑘𝑘 (repeated root) 

We found two equal roots, so our complementary function is: 𝑥𝑥 = (𝐴𝐴 + 𝐵𝐵𝑡𝑡)𝑒𝑒−𝑘𝑘𝑑𝑑, 
Now we need to find the particular integral. The RHS is 2𝑘𝑘𝑈𝑈 so we 
choose our P.I to be a constant. 

Let P.I.= 𝑥𝑥 = 𝐶𝐶 
�̇�𝑥 = �̈�𝑥 = 0 

Substitute our P.I. and its derivatives back into the original 
differential equation to find 𝐶𝐶. 

𝑘𝑘2𝐶𝐶 = 2𝑘𝑘𝑈𝑈 

∴ 𝐶𝐶 =
2𝑈𝑈
𝑘𝑘

General solution = complementary function + particular integral ⇒ 𝑥𝑥 = (𝐴𝐴 + 𝐵𝐵𝑡𝑡)𝑒𝑒−𝑘𝑘𝑑𝑑 +
2𝑈𝑈
𝑘𝑘

To find the constants A and B, we need to use the given 
information in the question: at time 𝑡𝑡 = 0, 𝑥𝑥 = 0 

0 = 𝐴𝐴 +
2𝑈𝑈
𝑘𝑘

∴ 𝐴𝐴 = −
2𝑈𝑈
𝑘𝑘

We are also told that 𝑣𝑣 = 0 at 𝑡𝑡 = 0. We find 𝑣𝑣 by differentiating 𝑥𝑥 
with respect to time. �̇�𝑥 = 𝑣𝑣 = −𝑘𝑘𝐴𝐴𝑒𝑒−𝑘𝑘𝑑𝑑 + 𝐵𝐵𝑒𝑒−𝑘𝑘𝑑𝑑 − 𝑘𝑘𝐵𝐵𝑡𝑡𝑒𝑒−𝑘𝑘𝑑𝑑 

At t=0, v=𝑈𝑈: 
𝑈𝑈 = −𝑘𝑘𝐴𝐴 + 𝐵𝐵 

𝐵𝐵 = 𝑈𝑈 + 𝑘𝑘𝐴𝐴 = 𝑈𝑈 + 𝑘𝑘 �−
2𝑈𝑈
𝑘𝑘
� = −𝑈𝑈 

Find the final form of the general solution. 𝑥𝑥 = �−
2𝑈𝑈
𝑘𝑘
− 𝑈𝑈𝑡𝑡� 𝑒𝑒−𝑘𝑘𝑑𝑑 +

2𝑈𝑈
𝑘𝑘

 

We draw a diagram with all forces labelled. 
Acceleration is positive in the direction of 𝑥𝑥 
increasing. On our diagram, this is to the right. 

Using 𝐹𝐹 = 𝑚𝑚𝑎𝑎.  The mass is 1.5kg.  

We can rewrite 𝑣𝑣 as 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and �̈�𝑥 as  
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

. 

12𝑠𝑠𝑟𝑟𝑜𝑜𝑡𝑡 − 7.5𝑥𝑥 − 6𝑣𝑣 = 1.5�̈�𝑥 

1.5 
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 6

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 7.5𝑥𝑥 = 12𝑠𝑠𝑟𝑟𝑜𝑜𝑡𝑡 

Divide by 1.5  
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2 + 4𝑑𝑑𝑥𝑥

𝑑𝑑𝑡𝑡
+ 5𝑥𝑥 = 8𝑠𝑠𝑟𝑟𝑜𝑜𝑡𝑡 as required

We look at the equation we want to show, and notice that there is no 𝑓𝑓. So we 
want to eliminate 𝑓𝑓. To eliminate 𝑓𝑓, we look at the equation where there is only 
one term in 𝑓𝑓 - this is the first equation.  

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

= 0.3𝑏𝑏 + 0.1𝑓𝑓 

Using this first equation, make f the subject. 𝑓𝑓 = 10
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡 − 3𝑏𝑏

Differentiate both sides with respect to 𝑡𝑡. 𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

= 10
𝑑𝑑2𝑏𝑏
𝑑𝑑𝑡𝑡2 − 3𝑑𝑑𝑏𝑏𝑑𝑑𝑡𝑡  

Substitute this result into the second given equation. 10
𝑑𝑑2𝑏𝑏
𝑑𝑑𝑡𝑡2 − 3𝑑𝑑𝑏𝑏𝑑𝑑𝑡𝑡 = −0.1𝑏𝑏+ 0.5𝑓𝑓 

We still have a term in 𝑓𝑓. To get rid of it, we use the result from the second step: 

𝑓𝑓 = 10
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡 + 3𝑏𝑏 10

𝑑𝑑2𝑏𝑏
𝑑𝑑𝑡𝑡2 − 3𝑑𝑑𝑏𝑏𝑑𝑑𝑡𝑡 = −0.1𝑏𝑏+ 0.5�10

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡 − 3𝑏𝑏�

Rearrange to give the required result. 
10
𝑑𝑑2𝑏𝑏
𝑑𝑑𝑡𝑡2 − 8𝑑𝑑𝑏𝑏𝑑𝑑𝑡𝑡 + 1.6𝑏𝑏 = 0

𝑑𝑑2𝑏𝑏
𝑑𝑑𝑡𝑡2

− 0.8
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

+ 0.16𝑏𝑏 = 0

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

= 0.3𝑏𝑏 + 0.1𝑓𝑓,
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

= −0.1𝑏𝑏 + 0.5𝑓𝑓.      Show that 
𝑑𝑑2𝑏𝑏
𝑑𝑑𝑡𝑡2

− 0.8
𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

+ 0.16𝑏𝑏 = 0

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 + 𝑓𝑓(𝑡𝑡) 

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

= 𝑐𝑐𝑥𝑥 + 𝑑𝑑𝑏𝑏 + 𝑔𝑔(𝑡𝑡) 

Note that the letters 𝑥𝑥 and 𝑏𝑏 need not be used. 
The differential equations could be in terms of any 
two letters, 𝑐𝑐 and 𝑑𝑑 for example. 
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